Abstract: We present new side-channel attacks on implementations of RSA and ElGamal encryption. The attacks can extract secret keys using a very low measurement bandwidth (a frequency band of less than 100 kHz, residing under 2 MHz) even when attacking multi-GHz CPUs. They targets implementation that use the popular sliding-window and fixed-window (m-ary) modular exponentiation.
We demonstrate the attacks' feasibility by extracting keys from laptop computers running GnuPG, using a nonintrusive measurement of electromagnetic emanations for a few seconds from a range of 50 cm. The measurement is made using cheap and readily-available components, such as a Software Defined Radio USB dongle or a consumer-grade radio receiver. The measurement equipment is compact and can operate untethered and concealed, e.g., inside pita bread.
The attack uses a few non-adaptive chosen ciphertexts to trigger the occurrence of specially-structured values inside the sliding-window or fixed-window exponentiation routine. These special values cause observable fluctuations in the electromagnetic field surrounding the laptop, in a way that depends on the key-bit pattern within the sliding window. The secret key can be deduced from these fluctuations, through suitable signal processing and cryptanalysis.
more here...........http://eprint.iacr.org/2015/170.pdf
We demonstrate the attacks' feasibility by extracting keys from laptop computers running GnuPG, using a nonintrusive measurement of electromagnetic emanations for a few seconds from a range of 50 cm. The measurement is made using cheap and readily-available components, such as a Software Defined Radio USB dongle or a consumer-grade radio receiver. The measurement equipment is compact and can operate untethered and concealed, e.g., inside pita bread.
The attack uses a few non-adaptive chosen ciphertexts to trigger the occurrence of specially-structured values inside the sliding-window or fixed-window exponentiation routine. These special values cause observable fluctuations in the electromagnetic field surrounding the laptop, in a way that depends on the key-bit pattern within the sliding window. The secret key can be deduced from these fluctuations, through suitable signal processing and cryptanalysis.
more here...........http://eprint.iacr.org/2015/170.pdf